
Assignment (Basic & Advance Level Questions)

	Basic	Level	
	• •	(b) Toroid carryin	
	•	(d)	None of these
•	•	(la) Assa Cassas as as	[AIEEE 2003]
magnet	pole to north - pole of the magne		rth - pole to south - pole of the
(c) Do not exist magnet		(d) Depend upon	the area of cross-section of the bar
•	_	² . The magnetic field	at a distance 0.1 m on its axis will be [MP PMT 2003]
(a) $1.2 \times 10^{-4} T$	(b) $2.4 \times 10^{-4} T$	(c) $2.4 \times 10^4 T$	(d) $1.2 \times 10^2 T$
A bar magnet of mag	gnetic moment M is placed in a m	agnetic field of induct	ion B. The torque exerted on it is
		[EAMC	ET (Engg.) 1995; CBSE 1999; BHU 2003]
(a) <i>M</i> . <i>B</i>	(b) $-M \cdot B$	(c) $M \times B$	(d) $-M \times B$
(a) <i>ml</i>	(b) 2ml	(c) $\sqrt{2}ml$	(d) $\frac{1}{2}ml$
rotates about the ax	kis passing through its centre an	d normal to plane of t	
(a) $Q\omega R^2$	(b) $\frac{1}{2}Q\omega R^2$	(c) $Q\omega^2R$	(d) $\frac{1}{2}Q\omega^2R$
(a) $MB(1-\sin\theta)$	(b) $MB \sin \theta$	(c) $MB \cos \theta$	(d) $MB(1-\cos\theta)$
	cic moment M and pole strength	<i>m</i> is divided in two ed	qual parts, then magnetic moment of
=	P Board 1985; MP PMT 1988; CPMT	1988; KCET 1994; AFMC	1996; DPMT 1984; MP PET 1984, 2000]
(a) <i>M</i>	(b) M/2	(c) $M/4$	(d) 2 <i>M</i>
Intensity of magneti	zation is given as		[UPSEAT 1999, 2000]
(a) Magnetic mome volume	nt per unit mass	(b)	Magnetic moment per unit
(c) Magnetic mome	nt per unit atomic weight	(d) None of the at	pove
There is no couple a	cting when two bar magnets are	placed coaxial separat	ed by distance because [EAMCET (Engg.
(a) There are no for	ces on the poles	(b)	The forces are parallel and
	(a) Straight conduct (c) Circular coil car The magnetic lines (a) Are form southmagnet (c) Do not exist magnet A small bar magnet $(\mu_0 = 4\pi \times 10^{-7} T.m/A)$ (a) $1.2 \times 10^{-4} T$ A bar magnet of magnet of magnet of magnet of one to (a) $M \cdot B$ Two identical thin be north pole of one to (a) ml A ring of radius R , rotates about the ax ω , then the magnitute (a) $Q\omega R^2$ If a bar magnet of R done in rotating the (a) R and R	magnet (c) Do not exist magnet A small bar magnet has a magnetic moment $1.2 \ A-m$ $(\mu_0 = 4\pi \times 10^{-7} T.m/A)$ (a) $1.2 \times 10^{-4} T$ (b) $2.4 \times 10^{-4} T$ A bar magnet of magnetic moment M is placed in a magnetic moment M is placed in a magneth pole of one touching south pole of the other. Moreover, and the magnetic moment M is placed in a magneth pole of one touching south pole of the other. Moreover, and the magnetic magnetic magnetic moment of the magnetic moment of the magnetic moment of the magnetic moment M is freely susted in rotating the magnetic moment M is freely susted in rotating the magnetic moment M is freely susted in rotating the magnetic moment M is freely susted in rotating the magnetic moment M and pole strength each part will be [NCERT 1974; MP Board 1985; MP PMT 1988; CPMT (a) M (b) $M/2$ Intensity of magnetization is given as (a) Magnetic moment per unit mass volume (c) Magnetic moment per unit atomic weight	(a) Straight conductor carrying current (b) Toroid carrying (c) Circular coil carrying current (d) The magnetic lines of force inside a bar magnet (a) Are form south-pole to north - pole of the magnet (b) Are form normagnet (c) Do not exist (d) Depend upon magnet (e) Do not exist (d) Depend upon magnet (e) Do not exist (d) Depend upon magnet (e) Do not exist (e) Depend upon magnet (field $(\mu_0 = 4\pi \times 10^{-7} T.m / A)$ (g) $1.2 \times 10^{-4} T$ (b) $2.4 \times 10^{-4} T$ (c) $2.4 \times 10^{4} T$ A bar magnet of magnetic moment M is placed in a magnetic field of induct [EAMC. (a) $M \cdot B$ (b) $- M \cdot B$ (c) $M \times B$ Two identical thin bar magnets each of length l and pole strength m are planorth pole of one touching south pole of the other. Magnetic moment of the (a) ml (b) $2ml$ (c) $\sqrt{2}ml$ A ring of radius R , made of an insulating material carries a charge Q un rotates about the axis passing through its centre and normal to plane of $magnetic$ $magnetic$ moment of the magnitude of the magnetic moment of the ring is (a) $Q\omega R^2$ (b) $\frac{1}{2}Q\omega R^2$ (c) $Q\omega^2 R$ If a bar magnet of magnetic moment M is freely suspended in a uniform $magnetic$ magnetic moment $magnetic$ (c) $magnetic$ moment $magnetic$ moment $magnetic$ (d) None of the all there is no couple acting when two bar magnets are placed coaxial separatic a) There are no forces on the poles (b)

118	Magnetism				
	(c) The forces are perp	endicular to each other	(d) The forces act alor	ng the same line	2
1.	A bar magnet when p experiences a moment	placed at an angle of 30° couple 2.5×10 ⁻⁶ N-m. If the left	to the direction of magnetic ength of the magnet is 5 cm,	c field inducti its pole strengt	on of 5×10^{-2} T, this [EAMCET (Mee
	(a) $2 \times 10^2 A - m$	(b) $5 \times 10^2 A - m$	(c) $2A-m$	(d) $5A - n$	i
2.	A magnet of magnetic torque acting on the magnetic	moment $50 \hat{i} A - m^2$ is place agnet is	d along the x-axis in a mag	netic field $\vec{B} =$	$(0.5\hat{i} + 3.0\hat{j})T$. The [MP PMT 2000]
	(a) $175 \hat{k} Nm$	(b) $150 \hat{k} Nm$	(c) 75 î Nm	(d) $25\sqrt{37}$	- k Nm
		statements in not correct ab	out the magnetic field		[AIIMS 2000]
	•	orce do not cut each other			[]
	(b) Insides the magnet(c) The magnetic lines	the lines go from north to so form a closed loop	outh pole of the magnet		
	(d) Tangents to the ma	agnetic lines give the direction	on of the magnetic field.		
•		etic moment 3.0 A-m ² is place periences a force of 6×10^{-4} M			2×10 ⁻⁵ T. If each [EAMCET 2000]
	(a) 0.5 m	(b) 0.3 m	(c) 0.2 m	(d) 0.1 m	
•	_	perpendicular to a uniform the angle by which it is t	_	e acting on the	magnet is to be
	(a) 30°	(b) 45°	(c) 60°	(d) 90°	
•	•	Ocm and pole strength 40 A- he couple acting on it is	m is placed at an angle of 4	5° in an unifor	m induction field
	(a) $0.5656 \times 10^{-4} N - m$	(b) $0.5656 \times 10^{-3} N - m$	(c) $0.656 \times 10^{-4} N - m$	(d) 0.656 >	$< 10^{-5} N - m$
•	magnet of magnetic me	ength at a point at a distance oment M , is B . The magnetic gnetic moment 8 M , will be			-
				[EAM	CET (Engg.) 1999]
	(a) 4 B	(b) B/2	(c) B/4	(d) 2B	
	If two bar magnets of d	lifferent magnetic lengths ha	ve equal moments than the p	oole strength is	[EAMCET (Med.) 1
	(a) Equal for both the	nagnets	(b) Lesser for shorter i	magnet (c)Mor	e for longer magn
•	axis of the magnet mal	strength 2 $amp-m$ kept in makes and angle of 30° with the $-m$. Then the distance between	e direction of the field. The	couple acting	
	(a) 20 m	(b) 2 m	(c) 3 cm	(d) 20 cm	
•		a short bar magnet is 1.25 an			
	(a) 1.0×10^{-4} newton /a	mp-meter	(b)	4×10^{-2} ne	wton /amp-meter
	(c) 2×10^{-6} newton /an	rp-meter	(d) 6.64×10^{-8} newton	/amp-meter	
,		\mathbf{r} et at a distance R from the \mathbf{c}	• •	, 1	[MP PET 1996]
	(a) R^2	(b) R^{3}	(c) $1/R^2$	(d) $1/R^3$	
		etic moment $10^4 J/T$ is free	e to rotate in a horizontal n		done in rotating
•	_	a direction parallel to a hor	_	$10^{-5}T$ to direct	_

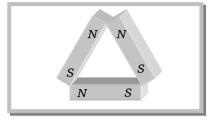
(c) 4.18 J

(d) $2 \times 10^2 J$

(a) 0.2J

(b) 2.0J

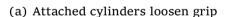
_	If a piece of metal was thence [KCET 1994]	hought to be magnet, which o	one of the following observa	ations would offer conclusive
	(a) It attracts a known m	agnet	(b)	It repels a known magnet
	(c) Neither (a) nor (b)		(d) It attracts a steel scr	ew dirver
24.	0	10cm and having pole streng angle of 30° with the direction	•	pt in a magnetic field (B) of n the magnet is
	(a) $2\pi \times 10^{-7} Nm$	(b) $2\pi \times 10^{-5} Nm$	(c) 0.5 Nm	(d) $0.5 \times 10^2 Nm$
25.	•	-		from the middle point of the e. <i>x cm</i> from the middle of the [MP PMT 1985; CPMT 1971, 88]
	(a) 100 <i>Gauss</i>	(b) 400 Gauss	(c) 50 Gauss	(d) 200 Gauss
26.		•		t at a distance x and 2 x cm ad B will be [EAMCET 1984; CPMT 198
	(a) 4:1 exactly	(b) 4:1 approx	(c) 8:1 exactly	(d) 8:1 approx
27.	Two equal bar magnets a arrow head at the point <i>P</i>	_		t magnetic field, indicated by
	(a) →	(b) 1	(c) \	(d) ↑
28.	Consider a magnetic dip	ole kept in the north -south	direction. Let P_1, P_2, Q_1, Q_2	be four points at the same
		towards north, south, east an		ectively. The directions of the
	(a) P_1 and P_2	(b) P_1 and Q_2	(c) P_1 and Q_1	(d) P_2 and Q_2
29.	A thin magnet of length L	is bent into an arc of a semi-	circle. The new length of th	e magnet is
	(a) $\frac{L}{\pi}$	(b) $\frac{L}{2\pi}$	(c) $\frac{2L}{\pi}$	(d) $\frac{2L}{3\pi}$
30.		ue to a magnetic dipole at a p magnetic moment of the dipol		cm from its centre is found to
	(a) $28.6A - m^2$	(b) $32.2 A - m^2$	(c) $38.4A - m^2$	(d) None of these
31. mon	The cross - sectional are	eas of three magnets of equa	l length are A, 2A and 6A.	. The ratio of their magnetic
	(a) 6:2:1	(b) 1:2:6	(c) 1:4:6	(d) 36:4:1
32.	If a hole is made at the ce	entre of a bar magnet, then its	=	
	(a) Increase	(b) Decrease	(c) Not change	(d) None of these
		Advance	Level	
33.	If the angular momentum	of an electron of mass m is J	then the magnitude of the n	nagnetic moment will be [MP PMT 2
	(a) $\frac{eJ}{m}$	(b) $\frac{eJ}{2m}$	(c) 2 <i>eJm</i>	(d) $\frac{2m}{eJ}$

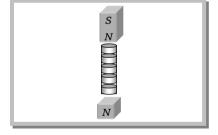

120 Magnetism

- **34.** Two small bar magnets are placed in a line with like poles facing each other at a certain distance *d* apart. If the length of each magnet is negligible as compared to *d* the force between them will be inversely proportional to[CPMT 19].
 - (a) d

(b) d^2

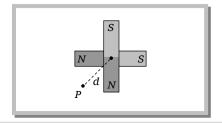
(c) $\frac{1}{d^2}$


- (d) d^4
- 35. Three indentical bar magnets each of magnetic moment M, are placed in the form of an equilateral triangle with north pole of one touching the south pole of the other (figure). The net magnetic moment of the system is
 - (a) Zero
 - (b) 3*M*
 - (c) $\frac{3M}{2}$
 - (d) $M\sqrt{3}$


- **36.** A bar magnet with its poles 25 cm apart and of pole strength 24.0 A-m rests with its centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm from the pivot so that it is held in equilibrium at an angle of 30° with respect to a magnetic field of induction 0.25 T. The value of force F is
 - (a) 5.62N
- (b) 2.56N

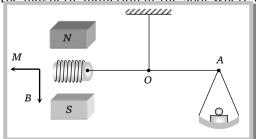
- (c) 6.52*N*
- (d) 6.25 A
- 37. Two short bar magnets with pole strengths of 900 ab $amp \times cm$ and 100 ab $amp \times cm$ are placed with their axes in the same vertical lines with similar poles facing each other. Each magnet has a length of 1 cm. When the separation between the nearer poles is 1 cm. The weight of the upper magnet is supported by the repulsive force between the magnets. If q is 1000 cm/sec^2 , then the mass of the upper magnet is
 - (a) 100 g
- (b) 55 g

- (c) 77.5 g
- (d) 45 g
- **38.** A strong magnet of magnico alloy can hold a chain consisting of several cylinders made of soft iron (figure). If a similar magnet is brought up from below to this chain, what happens if the magnets are arranged with their line poles facing



- (b) The attached cylinder tighten the grip
- (c) The cylinders fall one by one on to lower magnet.
- (d) The cylinders loose contact for the upper magnet and remains suspended in between two magnets.

- 39. Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point P which gets deflected through an angle θ under the influence of magnets. The ratio of distance d and d will be
 - (a) $(2 \tan \theta)^{1/3}$
 - **(b)** $(2 \tan \theta)^{-1/3}$
 - (c) $(2 \cot \theta)^{1/3}$
 - (d) $(2 \cot \theta)^{-1/3}$


- N S N N M
- **40.** Two short magnets of equal dipole moments M are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is
 - (a) $\frac{\mu_0}{4\pi} \frac{M}{d^3}$
 - (b) $\frac{\mu_0}{4\pi} \frac{M\sqrt{2}}{d^3}$

- (c) $\frac{\mu_0}{4\pi} \frac{2\sqrt{2}M}{d^3}$
- (d) $\frac{\mu_0}{4\pi} \frac{2M}{d^3}$
- 41. Two short magnets of magnetic moment 1000 Am^2 are placed as shown at the corners of a square of side 10 cm. The net magnetic induction at P is
 - (a) 0.1 T
 - (b) 0.2 T
 - (c) 0.3 T
 - (d) 0.4 T
- **42.** A long magnet is placed vertically with its S- pole resting on the table. A neutral point is obtained 10 cm form the pole due geographical north of it. If $B_H = 3.2 \times 10^{-5}$ Tesla, then the strength of the magnet is
 - (a) $16 ab amp \times cm$
- (b) 32 $ab-amp \times cm$
- (c) 64 $ab-amp \times cm$
- (d) 8 $ab-amp \times cm$
- 43. A bar magnet hangs by a thread attached to the ceiling of a room. When a horizontal magnetic field directed to the right is established,
 - (a) Both the string and the magnet will deviate form the vertical
 - (b) The string will deviate from the vertical and the magnet will remark
 - (c) The string will remain vertical and the magnet will deviate from t
 - (d) Both will remain vertical plane of the outer ring
- 44. A paramagnetic gas consists of atoms each with a dipole moment of 1.5×10^{-23} J/T. Temperature of the gas is $27^{\circ}C$ and its number density is 2×10^{26} m^{-3} . What is the maximum magnetisation of the sample possible when placed in an external field
 - (a) $1 \times 10^3 A/m$
- (b) $2 \times 10^3 A/m$
- (c) $3 \times 10^3 A/m$
- (d) $4 \times 10^3 A/m$
- 45. A small coil C with N=200 turns is mounted on one end of a balance beam and introduced between the poles of an electromagnet as shown in figure. The cross sectional area of coil is $A=1.0 \ cm^2$, length of arm OA of the balance beam is $l=30 \ cm$. When there is no current in the coil the balance is in equilibrium. On passing a current $I=22 \ mA$ through the coil the equilibrium is restored by putting the additional counter weight of mass $\Delta m=60 \ mg$ on the balance pan. Find the magnetic induction at the spot where coil is located.

(a) 0.4T

(b) 0.3 T

- (c) 0.2 T
- (d) 0.1 T

Earth's magnetism

Basic Level


	2 Magnetism	idin in pool of the heminental and		:. c:.13 :	in II then the total field
46.	intensity will be given	dip is 30°. If the horizontal con by	nponent of earth's magne	etic fiela i	is H, then the total field
	(a) $\frac{H}{2}$	(b) $\frac{2H}{\sqrt{3}}$	(c) $H\sqrt{2}$	(d)	$H\sqrt{3}$
47.	I is the total intensity these are related as	of earth's magnetic field, H its	horizontal component ar	nd V the v	vertical component then
			[CP]	MT 2000;	KCET (Engg./Med.) 2001]
	(a) $I = V^2 + H^2$	(b) $I = V + H$	(c) $I^2 = V + H$	(d)	$I^2 = V^2 + H^2$
48.	At the north pole of ea	ırth			[CPMT 2001]
	(a) <i>V>>H</i>	(b) $V = H = 0$	(c) V<< H	(d)	$V \neq 0, H = 0$
49.		horizontal component B_0 and the total intensity at the place with		of the ea	rth's magnetic field are
	(a) B_0	(b) B_0^2	(c) $2B_0$	(d)	$\sqrt{2}B_0$
50.	At a certain place, the angle of dip at this pla	horizontal component of earth	s magnetic field is $\sqrt{3}$ ti		vertical component. The 999, 2000; Pb. CET 2000]
	(a) 75°	(b) 60°	(c) 45°	(d)	30°
51.	The horizontal component of the earth's magnetic	nent of the earth's magnetic field c field is	d is $3.6 \times 10^{-5} T$ where the	e dip angle	e is 60°. The magnitude
	(a) $3.6 \times 10^{-5} T$	(b) $7.2 \times 10^{-5} T$	(c) $2.1 \times 10^{-4} T$	(d)	$2.8 \times 10^{-4} T$
52.	The angle between the	e magnetic meridian and geogra	phical meridian is called		[MNR 1990; MP PMT 2000
	(a) Angle of dip field	(b) Angle of declination	(c) Magnetic moment	(d)	Power of magnetic
53.	The null points are on	the axial line of a bar magnet, v	when it is placed such tha	t its soutl	n pole points
	(a) South	(b) East	(c) North	(d)	West
54.	At magnetic poles of e	arth, angle of dip is	[NCERT	1981; CPM	T 1977, 91; MP PET 1997]
	(a) Zero	(b) 45°	(c) 90°	(d)	180°
55.	The angle of dip at the	e magnetic equator is			
	[MP :	PET 1984; MP PMT 1987; CBSE 198	89, 90; MP Board 1980; CPN	IT 1977, 87	7, 90; Manipal MEE 1995]
	(a) o°	(b) 45°	(c) 30°	(d)	90°
56.	At a place, if the earth will be	n's horizontal and vertical comp	onents of magnetic fields	s are equa	al, then the angle of dip
					oard 1974, 76, SCRA 1994]
	(a) 30°	(b) 90°	(c) 45°	(d)	
57•		laces of the same horizontal int	-		[MNR 1984]
58.	(a) Isogonic lines A mariner's compass i	(b) A clinic line s used	(c) Isoclinic line	(d)	Isodynamic line
	(a) To compare magne	etic moments	(b)	For	determination of H
	(c) For determination	of direction	(d)	For	determination of din at

only

(d) Will stay in any position

A compass needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It

(b) Will stay in east-west

(a) Will stay in north-south direction

(c) Will become rigid showing no movement

a place

direction only

60.	A magnetic needle of magnetic moment 60 $amp-m^2$ experiences a torque of 1.2×10^{-3} $N-m$ directed in
	geographical north. If the horizontal intensity of earth's magnetic field at that place is $40\mu Wb/m^2$, then the
	angle of declination will be

(a) 30°

(b) 45°

(c) 60°

(d) 90°

Two similar poles of strength 3 mwb and 27 m wb are separated by a distance of 24 cm. The neutral point from 61. the smaller pole will be at

(a) 6 cm

(b) 9 cm

(c) 4 cm

(d) 7 cm

A bar magnet 8 cms long is placed in the magnetic meridian with the N - pole pointing towards geographical 62. north. Two neutral points separated by a distance of 6 cms are obtained on the equatorial axis of the magnet. If $B_H = 3.2 \times 10^{-5}$ Tesla then the pole strength of the magnet, is

(a) $5ab - amp \times cm$

(b) $10ab - amp \times cm$

(c) $2.5ab - amp \times cm$

(d) $20ab - amp \times cm$

Advance Level

The true value of angle of dip at place is 60°, the apparent dip in a plane inclined at an angle of 30° with 63. magnetic meridian is

[AIEEE 2002]

(a) $\tan^{-1} \frac{1}{2}$

(b) $tan^{-1}(2)$

(c) $\tan^{-1} \left(\frac{2}{3} \right)$

(d) None of these

A dip needle arranged to move freely in the magnetic meridian dips by an angle θ . If the vertical plane in which 64. the needle moves is rotated through an angle α to the magnetic meridian, then the needle will dip by an angle

(c) More than θ

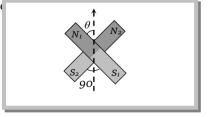
(d) Less than θ

If ϕ_1 and ϕ_2 be the angles of dip in two vertical planes at right angles to each other and ϕ is the true angle of dip 65.

(a) $\cot^2 \phi = \cot^2 \phi_1 + \cot^2 \phi_2$ (b) $\cot \phi = \cot^2 \phi_1 + \cot^2 \phi_2$ (c) $\cot \phi = \cot \phi_1 + \cot \phi_2$

(d) $\cot \phi = \cot \phi_1 / \cot \phi_2$

Two magnets of equal mass are joined at 90° to each other as shown in fig. Magnet N_1S_1 has a magnetic 66. moment $\sqrt{3}$ times that of N_2S_2 . The arrangement is pivoted so that it is free to rotate in horizontal plane.


When in equilibrium, what angle should N_1S_1 make with magnetic

(b) 60°

(c) 30°

(d) 45°

Tangent law and magnetic instruments

Basic Level

67. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 sec. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be

(a) $2\sqrt{3}$ sec

(b) $\frac{2}{3}$ sec

(c) 2 sec

(d) $\frac{2}{\sqrt{3}}$ sec

124	TA /T -	~	+:
12.7	IVI a	σne	riem
144	IVIC	SIIC	CIOII

(a) 0.2 A

deflection of 60° is

motion if its mass is quadrupled

(b) 0.3 A

68.

69.

	(a) Motion remains S.H.N	1. With the new period = $4T$		
	(b) Motion remains S.H.M	II. with the new period = $\frac{T}{2}$		
	(c) Motion does not rema	in S.H.M. and period is appro	ximately constant	
	(d) Motion remains S.H.M	I. with new period $2T$		
70.				T. Now it is broken into two cillate freely in the same field.
	If its period of oscillation	if T, the ratio $\frac{T'}{T}$ is		
		1		[AIEEE 2003]
	1	a. 1	. 1	
	(a) $\frac{1}{4}$	(b) $\frac{1}{2\sqrt{2}}$	(c) $\frac{1}{2}$	(d) 2
71.	their similar poles are o	n same side then its time per	riod of oscillation is T_1 . N	first placed in such a way that ow the polarity of one of the
		time period of oscillation is T_2		
	(a) $T_1 < T_2$	(b) $T_1 = T_2$	(c) $T_1 > T_2$	(d) $T_2 = \infty$
72.				vibration magnetometer with ds is $1/2$, then the ratio of M_1
	and M_2 is	[CPMT 2002]	1	, ,
	(a) 0.5	(b) 2	(c) 5/3	(d) 1/3
73.		s of a magnet is 2 sec. When i	•	he pole strength is 4 times its
				[Kerala PMT 2002]
	(a) 4 sec	(b) 2 sec	(c) 1sec	(d) 1/2 sec
74.	When two magnetic mom	ents are compared using equa	l distance method the defle	ections produced are 45° and 30°. It
	(a) 3:1	(b) 3:2	(c) $\sqrt{3}:1$	(d) $2\sqrt{3}:1$
75.	=	ced by another magnet of t		the magnetic meridian is T_0 . The rength but with double the
				[SCRA 1994; JIPMER 2002]
	(a) $\frac{T_0}{2}$	(b) $\frac{T_0}{\sqrt{2}}$	(c) $\sqrt{2} T_0$	(d) 2 T ₀
76.		ual to $8\pi \times 10^{-4}$ Tesla. Magnet	-	a magnetic field, which has a vibration equal to 15 sec. The
	moment of mertia of the	magnet is		[CBSE PMT 2001]
	2	7	7. 2	
	(a) $22.5 \times 10^7 kg - m^2$	(b) $11.25 \times 10^{-7} kg - m^2$	(c) $5.62 \times 10^{-7} kg - m^2$	(d) $7.16 \times 10^{-7} kg - m^2$
77•	Which of the following st	atement is not the true		[KCET 2001]
	(a) While taking reading earth's magnetic meridia		ne plane of the coil must l	be set at right angles to that

In a tangent galvanometer a current of 0.1 A produces a deflection of 30°. The current required to produce a

A bar magnet is oscillating in earth's magnetic field with a period T. What happens to its period and

(c) 0.4 A

[MP PET 2003]

(d) 0.5 A

(c) Measurements with the	le tangent garvanometer win i	be more accurate when the	deflection is around 45			
(d) A tangent galvanome	ter can not be used in the pola	r region				
Before using the tangent a	galvanometer, its coil is set in		[MP PMT 2001]			
(a) Magnetic meridien		(b) Perpendicular to magnetic meridien				
(c) At angle of 45° to mag	gnetic meridien	(d) It does not require a	ny setting			
The error in measuring th	e current with a tangent galva	anometer is minimum wher	n deflection is about			
(a) 0°	(p) 30°	(c) 45°	(d) 60°			
	in bar magnet in earth's ma ts length, the time period of		nagnet is cut into two equal			
(a) $\frac{T}{2}$	(b) T	(c) $\sqrt{2} T$	(d) 2 T			
	ters having coils of the same ns of 60° and 45° respective					
(a) $\frac{4}{3}$	(b) $\frac{(\sqrt{3}+1)}{1}$	(c) $\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}$	(d) $\frac{\sqrt{3}}{1}$			
When the radius of the t	angent galvanometer coil is	decreased its sensitivity	[KCET 1999]			
(a) Increases	(b) May increase or decreas	se (c)	Decreases (d)			
A short magnetic needle	is provided in a uniform m	agnetic field of strength	1 <i>T</i> . When another magnetic			
field of strength $\sqrt{3}T$ is	applied to the needle in a	perpendicular direction,	the needle deflects through			
an angle θ , where θ is	[KCET 1999]					
(a) 45°	(b) 90°	(c) 60°	(d) 30°			
	r of reduction factor I A i on a current of I A is passed t		of its coil parallel to the produced is			
(a) 45°	(b) Zero	(c) 30°	(d) 60°			
be the time periods o	f the oscillation when the	•	twice that of B . If T_1 and T_2 e poles are kept together			
respectively, then $\frac{T_1}{T_2}$ w	ill be	[SCRA 1998]				
(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$			
Two magnets of same siz ratio of their magnetic mo	e and mass make respectively oments is	7 10 and 15 oscillations per	minute at certain place. The			
(a) 4:9	(b) 9:4	(c) 2:3	(d) 3:2			
=	y suspended magnet is 4 secor ame way, then its time period	_	into two equal parts and one			
(a) 4 seconds	(b) 2 seconds	(c) 0.5 second	(d) 0.25 second			
	netic moment M_A is found in a placed in a vibrating maps.		r twice that of magnet B of that			
(a) $M_A = 2M_B$	(b) $M_A = 8M_B$	$(c) M_A = 4M_B$	(d) $M_B = 8M_A$			
	ment <i>M</i> oscillating freely in encoment is quadrupled and the [MP PET1991]	_	field makes n oscillations per e number of oscillations made			

CLICK HERE

(b) A short magnet is used in a tangent galvanometer since a long magnet would be heavy and may not easily

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

120	Magnetism			
	(a) $\frac{n}{2\sqrt{2}}$	(b) $\frac{n}{\sqrt{2}}$	(c) $2\sqrt{2} n$	(d) $\sqrt{2} n$
90.		lation of a magnet in vibration of a magnet in vibration of the coment is four times that of the		The period of oscillation of a magne
	(a) 1 sec	(b) 4 sec	(c) 8 sec	(d) 0.5 sec
91.	The number of tureduction factor h		tion of the coil of a tang	ent galvanometer are doubled. The [NCERT 1983
	(a) <i>K</i>	(b) 2K	(c) 4K	(d) $\frac{K}{4}$
92.	distance of 20 cm		At what distance from t	nagnetometer in tan <i>B</i> position at the compass needle should anothe
	(a) 5 cm	(6) 10 cm	(c) 15 cm	(4) 20 CH
		Adv	vance Level	
93.	The materials suit	able for making electromagne	ts should have	
	(a) High retentivit	ty and low coercivity	(b) Low retentivi	ty and low coercivity
	(c) High retentivit	ty and high coercivity	(d) Low retentivi	ty and high coercivity
94.	perpendicular and	d bisect each other. The ti of the magnets is removed an	ime period of oscillation	one over the other such that they are in a horizontal magnetic field is lates in the same field, then the time
	(a) $2^{1/4}$	(b) $2^{1/2}$	(c) 2	(d) $2^{-1/4}$
95.	-		•	h Horizontal field (H) is 4sec. When sec. The field of the second magnet is
	(a) $\sqrt{3}H$	(b) 2H	(c) 3 <i>H</i>	(d) 4H
96.	centre of the com	-	ection of 30°. If another	r magnet placed at 18 cm from the magnet of same length but 16 time arm the deflection will be
	(a) 0°	(b) 30°	(c) 45°	(d) 60°
97.	A compass needle	placed at a distance r from a	short magnet in tan A pos	ition shows a deflection of 60°. If the

through 90° from the meridian, is

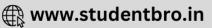
(a) 450°

(b) 360°

(c) 330°

(d) 150°

99. The magnetic needle of an oscillation magnetometer makes 10 oscillations per minute under the action of


A bar magnet suspended by a horse hair lies in the magnetic meridian when there is no twist in the hair. On turning the upper end of the hair through 150° from the meridian the magnet is deflected through 30° from the meridian. Then the angle through which the upper end of the hair has to be twisted to deflect the magnet

earth's magnetic field alone. When a bar magnet is placed at some distance along the axis of the needle it

distance is increased to $r(3)^{1/3}$, then the deflection of the compass needle is

(b) $60^{\circ} \times (3)^{1/3}$

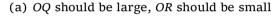
(c) $60^{\circ} \times (3)^{2/3}$

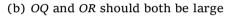
(d) $60^{\circ} \times (3)^{3/3}$

(a) 30°

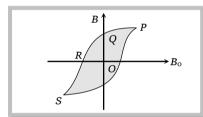
98.

	makes 14 oscillations pe the new frequency of osc	er minute. If the bar magnet i cillation of the needle is	s turned so that its pole into	erchange	their position	, Then				
	(a) 10 vibrations per mi minute	nute (b) (d) 2 vibrations per minut	14 vibrations per minute	(c) 4	vibrations	per				
100.	Two magnets are suspended by a given wire one by one. In order to deflect the first magnet through 45°, wire has to be twisted through 540° whereas with the second magnet the wire requires a twist of 360° for same deflection. Then the ratio of magnetic moments of the two is									
	(a) $\frac{3}{2}$	(b) $\frac{4}{3}$	(c) $\frac{7}{6}$	(d) $\frac{1}{7}$	1					
				Ma	agnetic mater	rials ()				
		Basic I	Level							
101.	The material of perman	nent magnet has			[KCET 1994,	2003]				
	(a) High retentivity, low coercivity	o coercivity	(b)	Low	retentivity,	high				
	(c) Low retentivity, low coercivity	coercivity	(d)	High	retentivity,	high				
102.	When a diamagnetic su	bstance is placed near a mag				_				
	(a) Attracted		r to EAMCET 1995, 96; CBSE (c) No effect			2003]				
103		(b) Repelledaw, the magnetic susceptibe	• /		one of these	e Tis				
103.	proportional to	aw, the magnetic susception	incy of a babbanee at an	abbora	to tomperatur	0 1 10				
					[CBSE PMT	2003]				
	(a) <i>T</i>	(b) $\frac{1}{T^2}$	(c) T ²	(d) $\frac{1}{T}$						
104.	Which of the magnetic m	naterials have negative suscep	tibly							
	(a) Diamagnetic materia	als (b) Paramagnetic material	s (c) Ferromagnetic materi	ials (d)Ferromagnetic	materials				
105.	· ·	in a magnetic field produced l the body of the frog behave as		lenoid p	laced below the	e frog.				
	(a) Paramagnetic	(b) Diamagnetic	(c) Ferromagnetic	(d) An	nti-ferromagnet	ric				
106.	A superconductor exhibi	ts perfect								
	(a) Ferromagnetism	(b) Ferromagnetism	(c) Diamagnetism	(d) Pa	ramagnetism					
107.		s suspended freely between the magnetic field. This observ	-	_	It is found to a	rrange				
	(a) Diamagnetic	(b) Paramagnetic	(c) Ferromagnetic	(d) An	iti-ferromagnet	ic				
108.	A liquid is there in a U tup, the magnetic charact	cube. A sudden magnetic field ter of liquid is	is produced perpendicular to	o one of	its arms, liquio	d rises				
	(a) Diamagnetic	(b) Paramagnetic	(c) Both	(d) No	one of these					
109.	Susceptibility of a mater	rial varies as $\chi = \frac{C}{T}$, where C	is a constant and T is tempe	rature a	t absolute state	e, then				
	material must be				_	_				
	(a) Diamagnetic		(b) Paramagnetic	LBHU	2000; UPSEAT	2002]				


128 Magnetism


(c) Ferromagnetic temperature

- (d) Any of the above depending upon range of
- 110. Which of the following statements is incorrect about hysterisis
 - (a) This effect is common to all ferromagnetic substances
 - (b) The hysterisis loop area is proportional to the thermal energy developed per unit volume of the material
 - (c) The hysterisis loop area is independent of the thermal energy developed per unit volume of the material
 - (d) The shape of the hysterisis loop is characteristic of the material
- 111. Of dia, para and ferromagnetism, the universal property of all substances is


[CPMT 1995, 2002]

- (a) Diamagnetism
- (b) Paramagnetism
- (c) Ferromagnetism
- (d) All of the above
- 112. The figure illustrate how B, the flux density inside a sample of unmagnetised ferromagnetic material varies with B_0 , the magnetic flux density in which the sample is kept. For the sample to be suitable for making a permanent magnet [AMU 2001]

- (c) OQ should be small and OR should be large
- (d) OQ and OR should both be small

- 113. Which of the following is true
 - (a) Diamagnetism is temperature dependent
- (b) Paramagnetism is temperature dependent
- (c) Paramagnetism is temperature independent
- (d) None of these
- **114.** The relative permeability is represented by μ and the susceptibility by χ for a magnetic substance. Then for a paramagnetic substance

[KCET 2001]

(a)
$$\mu_r > 1, \chi > 0$$

(b)
$$\mu_r > 1, \chi < 0$$

(c)
$$\mu_r < 1, \chi > 0$$

(d)
$$\mu_r < 1, \chi < 0$$

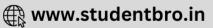
115. Identify the paramagnetic substance

(a) Iron

- (b) Aluminium
- (c) Nickel
- (d) Hydrogen
- 116. Magnetic susceptibility of which material does not depend on the temperature

[CBSE PM/PD 2001]

[Kerala (Engg.) 2001]


- (a) Dia-magnetism
- (b) Paramagnetism
- (c) Ferro-magnetism
- (d) Ferrite
- 117. The magnetic material, which moves from stronger to weaker parts of a magnetic field is known as
 - (a) Diamagnetic
- (b) Paramagnetic
- (c) Ferromagnetic
- (d) Anti-ferromagnetic
- **118.** The use of study of hysteresis curve for a given material is to estimate the

[CBSE PMT 2000]

- (a) Voltage loss
- (b) Hysteresis loss
- (c) Current loss
- (d) All of these
- 119. When a diamagnetic substances is inserted in a current carrying coil, the magnetic field is
 - (a) Decreased
 - (b) Unchanged
 - (c) Increased
 - (d) Increased or decreased depending upon the relative volume of the substance
- 120. An example for diamagnetic substance is

[KCET 2000]

				Magnetism 129
	(a) Iron	(b) Copper	(c) Aluminum	(d) Nickel
121.	If a diamagnetic su	ıbstance is brought near nor	th or south pole of a bar magnet	, it is [EAMCET (Engg.) 1995; CBSE
	(a) Attracted by th	ne poles	(b) Repelled by the po	oles
	(c) Repelled by the pole and repelled by	e north pole and attracted by	y the south pole	(d) Attracted by the north
122.	Substances in whic	ch the magnetic moment of a	a single atom is not zero, are kno	own as
	(a) Diamagnetic	(b) Ferromagnetic	(c) Paramagnetic	(d) Ferromagnetic
123.	Which one of the	following materials is ferr	romagnetic	
	(a) Gold	(b) Nickel	(c) Wood	(d) Manganese
124.	The major contrib	oution of magnetism in sub	ostances is due to	
	(a) Orbital motion electrons	of electrons		(b) Spin motion of
	(c) Equally due to	orbital and spin motions of	electrons (d) Hidden magnets	
125.	The softness of a	magnetic substance is mea	asured by	
	(a) Magnetic induc	ction (b) Coercivity	(c) Intensity of magn	etisation (d) Density
126.	Select the wrong st	tatement		
	(a) In a diamagnet	tic substance the direction \vec{I}	is opposite to that of \overrightarrow{H}	
	(b) In a paramagno	etic substance the direction	\vec{I} is along \vec{H}	
	-	netic substance, the direction		
	_			
	(d) In a diamagnet	tic substance, the direction	\hat{I} is along \hat{H}	
127.		agnetic substances is placed (represented by thick black)		th of the following represents the
	(a) N	S (b) N	S (c) N S	
=				

Advance Level

128. The variation of the intensity of magnetisation (I) with respect to the magnetising field H in a diamagnetic substance is described by the graph

(a) OA

(b) OB

(c) OC

(d) OD

129. Magnetic moment of Ne is

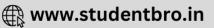
(a) o

(b) $1.27 \times 10^{-24} \ amp-m^2$

(c) $3.4 \times 10^{-24} \text{ amp-m}^2$

(d) $5.6 \times 10^{-24} \ amp-m^2$

130. If a diamagnetic solution is poured into a U-tube and one arm of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will


(a) Rise

(b) Fall

(c) Oscillate slowly

(d) Remain as such

130 Magnetism

- 131. The number of atoms per unit volume in a sample of iron is 9×10^{28} atom/ m^3 . The magnetic moment of every iron atom is 1.5×10^{28} $A-m^2$. If all the dipoles are aligned in a domain due to ferromagnetic interaction, then the magnetization of an iron rod of length 10 cm and area of cross-section 1 cm^2 will be
 - (a) $1.8 \times 10^6 \, A/m$
- (b) $1.31 \times 10^5 A/m$
- (c) $1.35 \times 10^5 A/m$
- (d) $1.4 \times 10^3 A/m$

Assignment (Basic & Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	a	b	С	С	b	d	b	b	d	С	b	b	d	a	b	b	d	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	a	b	a	a	d	b	a	d	С	b	С	b	d	a	d	b	b	С	С
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
c	b	С	С	a	b	d	d	d	d	b	b	c	С	a	С	d	c	d	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	a	b	c	a	С	c	b	d	С	a	С	c	d	С	d	a	a	c	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	a	С	a	С	a	b	С	c	a	a	b	a	С	d	b	a	c	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	d	a	b	С	a	b	b	С	a	b	b	a	b	a	a	b	a	b
121	122	123	124	125	126	127	128	129	130	131									
b	С	b	b	b	d	b	С	a	b	С									

